Поиск
На сайте: 763928 статей, 327750 фото.

Двоичный код

[[Файл:Wikipedia in binary.gif|thumb|250px|Слово «Wikipedia», закодированное двоичным ASCII-кодом.]] Двои́чный код — это способ представления данных в виде кода, в котором каждый разряд принимает одно из двух возможных значений, обычно обозначаемых цифрами 0 и 1. Разряд в этом случае называется двоичным разрядом.

В случае обозначения цифрами «0» и «1», возможные состояния двоичного разряда наделяются качественным соотношением «1» > «0» и количественными значениями чисел «0» и «1».

Двоичный код может быть непозиционным и позиционным. Позиционный двоичный код лежит в основе двоичной системы счисления, широко распространенной в современной цифровой технике.

Содержание

Описание

Из комбинаторики известно, что, в случае непозиционного кода, количество комбинаций (кодов) n-разрядного кода является числом сочетаний с повторениями, равно биномиальному коэффициенту:

<math>{n+k-1\choose k} = (-1)^k {-n\choose k} = \frac{\left(n+k-1\right)!}{k!\left(n-1\right)!}</math>, [возможных состояний (кодов)], где:

<math>n</math> — количество элементов в данном множестве различных элементов (количество возможных состояний, цифр, кодов в разряде),
<math>k</math> — количество элементов в наборе (количество разрядов).
В двоичной системе кодирования (n=2) количество возможных состояний (кодов) равно :

<math>\frac{\left(n+k-1\right)!}{k!\left(n-1\right)!}=\frac{\left(2+k-1\right)!}{k!\left(2-1\right)!}=\frac{\left(k+1\right)!}{k!1!}=k+1</math>, [возможных состояний (кодов)], то есть

описывается линейной функцией:

<math>N_{kp}(k)=k+1</math>, [возможных состояний (кодов)], где

<math>k</math> — количество двоичных разрядов.
Например, в одном 8-битном байте (k=8) количество возможных состояний (кодов) равно:

<math>N_{kp}(k)=k+1=8+1=9</math>, [возможных состояний (кодов)].

В случае позиционного кода, число комбинаций (кодов) k-разрядного двоичного кода равно числу размещений с повторениями:

<math>N_{p}(k)=\bar{A}(2,k) = \bar{A}_2^k = 2^k</math>, где

<math>\ k</math> — число разрядов двоичного кода.

Используя два двоичных разряда можно закодировать четыре различные комбинации: 00 01 10 11, три двоичных разряда — восемь: 000 001 010 011 100 101 110 111, и так далее.
При увеличении разрядности позиционного двоичного кода на 1, количество различных комбинаций в позиционном двоичном коде удваивается.

Двоичные коды являются комбинациями двух элементов и не являются двоичной системой счисления, но используются в ней как основа. Двоичный код также может использоваться для кодирования чисел в системах счисления с любым другим основанием. Пример: в двоично-десятичном кодировании (BCD) используется двоичный код для кодирования чисел в десятичной системе счисления.
При кодировании алфавитноцифровых символов (знаков) двоичному коду не приписываются весовые коэффициенты, как это делается в системах счисления, в которых двоичный код используется для представления чисел, а используется только порядковый номер кода из множества размещений с повторениями.

В системах счисления k-разрядный двоичный код, (k-1)-разрядный двоичный код, (k-2)-разрядный двоичный код и т. д. могут отображать одно и то же число. Например, 0001, 001, 01, 1 — одно и то же число — «1» в двоичных кодах с разным числом разрядов — k.
Шаблон:Нет ссылок в разделе

Примеры двоичных чисел

В таблице показаны первые 16 двоичных чисел и их соответствие десятичным и шестнадцатиричным числам.

Десятичное число Шестнадцатеричное число Двоичное число
0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001
10 A 1010
11 B 1011
12 C 1100
13 D 1101
14 E 1110
15 F 1111

Пример «доисторического» использования кодов

Инки имели свою счётную систему кипу, которая физически представляла собой верёвочные сплетения и узелки. Генри Эртан обнаружил, что в узелках заложен некий код, более всего похожий на двоичную систему счисления.

См. также