Уайлс, Эндрю Джон
Эндрю Джон Уайлс | |
![]() | |
Дата рождения: | 11 апреля 1953 г. |
Сэр Эндрю Джон Уайлс (англ. Sir Andrew John Wiles, титул сэра с 2000, после посвящения в рыцари; родился 11 апреля 1953) — английский и американский математик, профессор математики Принстонского университета, заведующий его кафедрой математики, член научного совета Института математики Клэя.
Получил ученую степень бакалавра в 1974 году в колледже Мертон Оксфордского университета. Научную карьеру начал летом 1975 под руководством профессора Джона Коутса в колледже Клэр Кембриджского университета, где и получил степень доктора. В период с 1977 по 1980 Уайлс занимал должности младшего научного сотрудника в колледже Клэр и доцента в Гарвардском университете. Совместно с Джоном Коутсом он работал над арифметикой эллиптических кривых с комплексным умножением методами теории Ивасавы. В 1982 году Уайлс переехал из Великобритании в США.
Одним из главных событий в его карьере стало заявление о доказательстве Великой теоремы Ферма в 1993 году и обнаружение изящного метода, позволившего закончить доказательство, в 1994 году. Профессиональную работу над Великой теоремой Ферма он начал летом 1986 году после того, как Кен Рибет доказал гипотезу о связи полустабильных эллиптических кривых (частного случая теоремы Таниямы—Шимуры) с теоремой Ферма.
Содержание |
История доказательства 
Великая теорема Ферма утверждает, что не существует положительных целых решений уравнения xn + yn = zn для n большего двух.
Эндрю Уайлс познакомился с Великой теоремой Ферма в возрасте десяти лет. Тогда он сделал попытку доказать её используя методы из школьного учебника. Позднее он стал изучать работы математиков, которые пытались доказать эту теорему. После поступления в колледж, Эндрю забросил попытки доказать Великую теорему Ферма и занялся изучением эллиптических кривых под руководством Джона Коутса.
В 50-х и 60-х годах предположение о наличии связи между эллиптическими кривыми и модулярными формами было высказано японским математиком Шимурой, который основывался на идеях, высказанных другим японским математиком Таниямой. В западных научных кругах это гипотеза была известна благодаря работе Андре Вейля, который в результате тщательного её анализа обнаружил множество фундаментальных данных, свидетельствующих в её пользу. Из-за этого теорему часто называют теоремой Шимуры—Таниямы—Вейля. Теорема гласит, что каждая эллиптическая кривая над полем рациональных чисел является модуляром. Теорема была полностью доказана в 1998 Кристофом Бройлем, Брайном Конрадом, Фредом Даймондом и Ричардом Тэйлором, которые использовали методы, опубликованные Эндрю Уайлсом в 1995.
Пусть p — простое число и a, b и c — такие положительные целые числа, что ap+bp=cp. Тогда соответствующее уравнение y2 = x(x - ap)(x + bp) определяет гипотетическую эллиптическую кривую, называемую кривой Фрея, которая существует, если не существует контрпримера к Великой теореме Ферма. Герхард Фрей, основываясь на работах Хеллегуарка, указал, что в случае существования такой кривой, она будет обладать крайне необычными свойствами, и предположил, что она может быть не модулярной.
</div>